Putting out Fire with Fire : Fracking and Flammable Water

maxresdefault

Substantial scientific evidence has revealed strong linkages between hydraulic fractring activity and groundwater contamination. This has manifested throughout the United States in the form of neurological and reproductive damage, severely ailing livestock and visibly polluted tap water, to name a few. However, more dramatic indicators of the dangers associated with fracking have been documented in Dimock, Pennsylvania, located in the natural gas mecca of the Marcellus Shale. In Dimock, contaminated water can be identified through a simple yet dangerous home science experiment, involving a match held to a running tap. If the water is indeed contaminated, the bizarre phenomenon of a stream of water bursting into flame provides clear evidence of traces of methane.

Flammable tap water in Dimock has been linked to traces of methane detected in drinking water wells. A study conducted by Duke University explores the connection between hydraulic fracturing and water contamination in the Marcellus Shale area by testing drinking water wells in proximity to natural gas wells. Findings from this study reveal that the type of gas detected at high levels in the water was the same type of gas that the drilling companies were extracting (Lustgarten, 2011). This indicates that the gas may be seeping underground through the fractures created during the hydraulic fracturing process, in addition to any other natural or man-made crevasses (Lustgarten, 2011). Of the wells tested closest to the gas wells, water samples on average contained 17 times the levels of methane detected in wells further from drilling, further illustrating the connection between drilling and contamination (Lustgarten, 2011).

Incidents of methane contamination have been widely experienced in gas drilling areas including Colorado and Ohio in addition to Pennsylvania. In all cases, residents concluded that there had been no issue with contamination prior to the onset of drilling operations. In an attempt to deflect accusations, gas companies have attributed the cause of methane infiltration to natural causes. Biogenic, naturally occurring methane, can be detected in water samples from fracking sites. However, samples collected during the Duke investigation indicated high concentrations of thermogenic methane, which is derived from the same hydrocarbon layers where gas drilling is targeted, thus again proving the direct link between hydraulic fracturing and contamination (Lustgarten, 2011).

Residents of Dimock, PA., are among those who have witnessed the dramatic and perilous effects of methane contamination. A drinking water well on the property of local resident Norma Fiorentino provides an example of the damages resulting from drilling. In this case, stray gas from a nearby gas well had worked its way into crevasses within the rock, gradually leaking upwards into the aquifer and eventually into her well. A spark created by a motorized pump inside the well house triggered an explosion due to the build up of fumes within (Lustgarten, 2009). This is not a singular phenomenon in Dimock, where many drinking water wells have exploded under the operation of Cabot Oil & Gas. In one case, a local resident was advised to “open a window if he planned to take a bath” due to the build up of methane in his well (Lustgarten, 2009). A particularly treacherous explosion in Cleveland, OH resulted in the lifting of a house clear off the ground due to gas build up in the basement. Investigation into this explosion revealed the at fault party to be a nearby drilling company that had failed to adequately build protective concrete casing, while continuing to operate the well (Lustgarten, 2009).

Methane becomes dangerous when it evaporates out of water and into people’s homes. At this point it becomes flammable, and also can cause suffocation to those who breathe it. Concentrations of methane can cause headaches, nausea, brain damage and eventually death (Lustgarten, 2011). In poverty stricken areas, such as Dimock, residents saw the arrival of hydraulic fracturing operations as a blessing, delivering them from their financial woes. However, as improper protective measures continue and the destructive process causes stray gas to seep into drinking water wells, residents are faced with the dilemma of sacrificing their economic wellbeing, or their health.

The following video portrays some of the impacted residents of Dimock, PA due to persistent gas drilling by Cabot Oil and Gas:

This video emphasizes the extreme effects of methane infiltration in drinking water:

Sources and Further Reading:

Lustgarten, A. (2009). Officials in Three States Pin Water Woes on Gas Drilling. ProPublica.
http://www.propublica.org/article/officials-in-three-states-pin-water-woes-on-gas-drilling-426

Lustgarten, A. (2011). Scientific Study Links Flammable Drinking Water to Fracking. ProPublica. http://www.propublica.org/article/scientific-study-links-flammable-drinking-water-to-fracking by Abrahm Lustgarten

Drinking dollars?

Image retrieved from http://ecowatch.com/2014/06/16/wyoming-fracking-water-contamination-investigation/

Pavillion, WY resident Louis Meeks’ holds up well water containing methane gas, hydrocarbons, lead and copper, according to the EPA’s test results in this 2013 photo. Photo credit: Abrahm Lustgarten/ProPublica

In 1990, residents of Pavillion, Wyoming first began to notice something was wrong with their water. Oil wells in backyards were causing tap water to turn black and taste like gas. Over 20 years later, in 2011, the U.S Environmental Protection Agency (EPA) finally made the connection between fracking and groundwater contamination (Zeidel et. al, 2011). Residents in Pavillion living on sites of wells drilled by oil giant Encana complained of foul smelling and undrinkable water in 2008, spurring the EPA to begin conducting tests. The EPA drilled wells of their own in the area and discovered the water tested was highly alkaline and contained large concentrations of potassium and chloride as well as synthetic chemicals, petroleum hydrocarbons and traces of diesel fuel (Zeidel et. al, 2011). The presence of these chemicals was linked to problems with the cementing of the casing used to line the wells, thus allowing the fracturing fluid to penetrate well water supplies (Zeidel et al, 2011). As a result, residents of Pavillion have experienced neurological impairment, loss of smell and nerve pain (Lustgarten, 2011).

Spokesman of Encana Doug Hock maintains that there is low probability that fracking has led to water pollution, however hydraulic fracturing is an inherently dangerous process, posing threats to water supply at all levels of production. Fracking only one well requires enough water to fill seven olympic sized swimming pools (Deveau, 2014). The extraction phase of the process requires water to be mixed with a toxic swill of chemicals (Deveau, 2014). During the injection process, fluids can leak to other areas. Leakoff, if not controlled, causes the injected fluids to leak into drinking water aquifers (Palliser, 2012).

After injection, the internal pressure of the rock formation causes the fluid to return to the surface. (Palliser, 2012). This is called flowback, a liquid containing both the injected chemicals as well as naturally occurring materials such as hydrocarbons, brines, metals and radio nuclides (Palliser, 2012). In order to be disposed of, flowback is often injected underground, or treated and reused at wastewater treatment plants. Problems occur with each method. In Ohio, the disposal capacity is being threatened by expanding flowback from Marcellus, a major fracking development in Pennsylvania. These limitations in disposal have led to the proposal of shipping brine waste to be deposited in the Gulf Coast (Downing, 2013). Furthermore, waste treatment plants used by fracking developments to treat and reuse wastewater are not equipped to remove contaminants such as chlorides and radio nuclides before the water is returned to rivers (Palliser, 2012).

Cases such as those in Wymoing illustrate the need for further control in the process of hydraulic fracturing if operations are intended to continue. A study by an endocrinologist in the U.S reveals that 75% of the chemicals used to frack disrupt sensory organs and the respiratory gastrointestinal system (Deveau, 2014).Given these statistics, the denial of fracking as a cause of groundwater contamination by companies such as Encana is extremely irresponsible, ultimately prioritizing economic growth over human and environmental health. This blunder is sure to become an issue of devastating proportions as we eventually discover that we cannot in fact drink our dollars.

Sources and further reading:

  • Palliser, J. (2012). Fracking fury.Science Scope, 35(7), 20-24. Retrieved from http://search.proquest.com/docview/927534588?accountid=13876
  • Deveau, JL. (2014). How to Fight Fracking. Alternatives Journal. Retrieved from: http://search.proquest.com.libproxy1.nus.edu.sg/docview/1508764319?pq-origsite=summon
  • Zeidel, M., O’Neil, L. (2011).US EPA Makes Connection Between Fracking and Water Pollution. The Oil Daily(c) 2011 Energy Intelligence Group.  http://www.highbeam.com/doc/1G1-274587263.html

a timeline of success

In light of the 2015 Scottish ban on fracking developments, introductions to the other members of the slowly growing frack-free society are in order:

  • Pittsburgh, Pennsylvania, in 2010 
  • Philadelphia, Pennsylvania in 2012
  • Broadview Heights, Mansfield, Oberlin and Yellow Springs, Ohio, in 2012 
  • Cantabria, Spain, in 2013
  • Hawai’i County in 2013 
  • Dallas, Texas, in 2013
  • Mora County, New Mexico in 2014
  • Beverly Hills, Santa Cruz, San Benito and Mendocino Counties, California, in 2014
  •  Denton, Texas, in 2014
  • Athens, Ohio, in 2014
  • Boulder, Colorado extends 2012 ban in 2014
  • New York State: first state to ban fracking in December 2014 
  • Fracking is also currently prohibited in GermanyNorthern IrelandFrance and Bulgaria.

http://keeptapwatersafe.org/global-bans-on-fracking/