You are what you eat…

If the saying is true, it may be time for a change in diet. Or, for residents of states affected by shale gas drilling such as Colorado, Louisiana, New York, Ohio, Pennsylvania or Texas, a change of address. A study by veterinarian Michelle Bamberger and molecular medicine professor Robert Oswald sheds light on the risks posed to animal and human health by hydraulic fracturing occurring on farmland by conducting interviews with animal owners in the above listed six states. The cases documented in their 2012 paper involve farms located near high volume hydraulic fracturing wells.

Hydraulic fracturing requires a toxic cocktail of chemicals and water, present at the injection site and persisting in wastewater. Among the numerous deadly chemicals hydraulic fracturing fluid contains are petroleum hydrocarbons and quaternary ammonium compounds, both reported to cause lesions in the lung, liver, kidneys,intestines and trachea. Oswald and Bamberger outline the species affected by these chemicals and chronicle the damage and impairment they undergo. Among the impacted species are white tailed deer, cows, fish and poultry, commonly subject to reproductive issues and sudden death since the arrival of shale gas wells (Bamberger and Oswald, 2012).

The most widely affected species in this study, the cow, demonstrates the excruciating degree of harm hydraulic fracturing operations inflict. Exposure to dangerous chemicals utilized in fracking occur in many ways, the most common being exposure through affected ponds or creaks due to wastewater leakage or improper fencing of waste impoundments. Exposure also occurs due to pipeline leaks, compressor station malfunction and well flaring. In an extreme case, direct exposure to fracking fluid occurred when a worker shut down a chemical blender during the fracturing process, releasing fluids into a nearby cow pasture resulting in the death of 17 cows in one hour.Typically, exposure to hydraulic fracturing fluids results in death 1-3 days post exposure (Bamberger and Oswald, 2012).

The most common health impact on cattle when exposed to hydraulic fracturing fluids results in reproductive issues. This manifests in several ways, including an increase in stillborn calves, often with congenital abnormalities. Other causes of death include respiratory failure, circulatory collapse, and acute liver or kidney failure. The role played by hydraulic fracturing in the impairment and death of numerous herds of cattle cannot be denied. In a particular case, one farmer had his cows separated into two pastures, one with a creek and one without. Of the 60 cows exposed to the creek water where wastewater had been dumped, 21 died and 16 failed to reproduce. All of the cows in the separate field were unaffected (Bamberger and Oswald, 2012).

Also included in the study are companion animals such as dogs, cats, llamas and horses. The most frequent incident of exposure for these animals occurs when contaminated water is consumed from a well, spring creek or pond. This results most commonly in reproductive and neurological problems as well as gastrointestinal and dermatological issues. In one case documented by Oswald and Bamberger, a previously healthy female dog gave birth to 15 puppies; of which 7 were stillborn, and 8 died within 24 hours. All of which were born with a complete or partial absence of hair(Bamberger and Oswald, 2012).

The severe effects of hydrofracking fluid are not restricted to animals. Toxicology tests were conducted on the owners of companion animals and farm animals, and the results are not coincidental. Commonly occurring in residents in proximity to shale gas wells is arsenic poisoning, with symptons of severe abdominal pain, backache and fatigue. Arsenic is a naturally occurring substance in shale, and is surfaced during hydraulic fracturing through wastewater. The negligent storing of wastewater and dumping into creeks and ponds results in arsenic poisoning. Long term effects of arsenic poisoning include peripheral neuropathy in humans and partial paralysis and fetal death in animals (Bamberger and Oswald, 2012).

The results from this study help us to understand the extreme effects of hydraulic fracturing on both animal and human health. This is of growing concern as fracking operations accelerate and drilling companies refuse to disclose all of the dangerous chemicals used in hydraulic fracturing fluid, furtively declaring the contents to be a “trade secret”. For humans there is concern both for residents of these affected states, as well as the greater population consuming meat that may have been exposed. In many cases, food producing animals are not tested for contaminants before slaughter, while farms in areas testing positive for air and water contamination do not test meat or dairy products before consumption. A possible solution suggested by Bamberger and Oswald is increased funding for food safety research to protect ourselves from further harm. In order to reduce the suffering of livestock as well, greater efforts are required to adequately deal with wastewater. Metal containers have been proposed as an alternative to open air impoundments that have had a disastrous history of leaking into farmland (Bamberger and Oswald, 2012).

The contamination associated with hydraulic fracturing has infiltrated every necessary aspect of human survival. It is in our water, in our air, on our land and in our food. If the extraction and provision of oil remains a priority, the menu for survival may be up for revision.

Fracking Farmland 615px

Sources and further reading:
Bamberger, M., Oswald, R. (2012). Impacts of Gas Drilling on Human and Animal Health. Scientific Solutions. 22 (1). pg 51-77.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s